|
25px h 25px |- |bgcolor=#e7dcc3|Vertex figure||t1 25px |- |bgcolor=#e7dcc3|Coxeter group|| () |} The 5-demicube honeycomb, or demipenteractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 5-space. It is constructed as an alternation of the regular 5-cube honeycomb. It is the first tessellation in the demihypercube honeycomb family which, with all the next ones, is not regular, being composed of two different types of uniform facets. The 5-cubes become alternated into 5-demicubes h and the alternated vertices create 5-orthoplex facets. == D5 lattice == The vertex arrangement of the 5-demicubic honeycomb is the D5 lattice which is the densest known sphere packing in 5 dimensions.〔http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/D5.html〕 The 40 vertices of the rectified 5-orthoplex vertex figure of the ''5-demicubic honeycomb'' reflect the kissing number 40 of this lattice.〔''Sphere packings, lattices, and groups'', by John Horton Conway, Neil James Alexander Sloane, Eiichi Bannai ()〕 The D packing (also called D) can be constructed by the union of two D5 lattices. The analogous packings form lattices only in even dimensions. The kissing number is 24=16 (2n-1 for n<8, 240 for n=8, and 2n(n-1) for n>8).〔Conway (1998), p. 119〕 : ∪ The D〔http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/Ds5.html〕 lattice (also called D and C) can be constructed by the union of all four 5-demicubic lattices:〔Conway (1998), p. 120〕 It is also the 5-dimensional body centered cubic, the union of two 5-cube honeycombs in dual positions. : ∪ ∪ ∪ = ∪ The kissing number of the D lattice is 10 (''2n'' for n≥5) and it Voronoi tessellation is a tritruncated 5-cubic honeycomb, , containing all with bitruncated 5-orthoplex, Voronoi cells.〔Conway (1998), p. 466〕 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「5-demicubic honeycomb」の詳細全文を読む スポンサード リンク
|